Electrical amplifiers

Type VT-VSPA1-1 and VT-VSPA1K-1

Component series 1X

Features

- Suitable for controlling all direct and pilot operated proportional pressure control valves without electrical position feedback and only one solenoid as actuator that are available at the time of publication of this data sheet
- Differential input, can be switched between voltage and current input
- Additional command value input, 0 to +9 V
- Ramp generator, can be adjusted separately for up and down ramps
- Clocked output stage
- Signal "ready for operation" (VT-VSPA1K-1 only with LED indicator lamp)
- Reverse polarity protection for voltage supply
- Cable break detection of current input 4 to 20 mA
- Short-circuit protection of solenoid cable
- Cable break detection of solenoid cable

Suitable card holders for VT-VSPA1-1:

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply unit

Suitable power supply unit:

- Type VT-NE30-1X, see RE 29929

Compact power supply unit 115/230 VAC $\rightarrow 24$ VDC, 108 W

Ordering code

	VT-VSPA1	$1-1 x / 1 *$	
Amplifiers for controlled proportional pressure control valves, analogue, with one solenoid		$1 \mathrm{X}=$	Further details in clear text Component series 10 to 19
With 32-pin male connector and front panel With 16 -pin terminal strip; without front panel	$\begin{array}{r} =\text { No code } \\ =K \end{array}$		(10 to 19: unchanged technical data and pin assignment)

For substitutes for amplifier types VT 2000 (up to component series 4X), VT 2010, VT 2013 or VT 2023 for rack installation, blind plate $4 \mathrm{TE} / 3 \mathrm{HE}$ must be ordered separately. Material no. R900021004

Functional description

The command value voltage is applied to command value input 1 either directly or via an external command value potentiometer with the help of the regulated +9 V voltage from the power supply unit [14].
The following is valid for this input: +9 V +100 \% ${ }^{11}$.

External command value feedforward

Note:
When an external command value potentiometer is used, internal potentiometer "Gw" [3] must be set to maximum or the required maximum pressure.

Internal command value feedforward

Differential input (input 2)

Additions to the pin designations in brackets are only valid for type VT-VSPA1-1.

Command value input 2 is a differential input [1] (0 to +10 V).
With the help of DIL switches ${ }^{2)}$ it can be configured as current input (4 to 20 mA or 0 to +20 mA). If the command value is fed forward by external electronics with a different reference potential (e.g. by a PLC), this input must be used. When the command value voltage is applied or withdrawn, care must be taken that both signal cables are disconnected from or connected to the input.
Before being passed on, both command values are summated [2] and then fed to a potentiometer [3] that is accessible on the front panel and acts as attenuator and limits the maximum command value.
The downstream ramp generator [4] generates a ramp-shaped output signal from a stepped input signal. The time constant of this signal can be adjusted separately for "up" and "down" ramps with the help of two potentiometers. The specified ramp time refers to a command value step-change of 100% and can be approx. 1 s or 5 s , depending on the setting of a DIL switch ${ }^{2)}$. If a command value step-change of less than 100% is fed to the input of the ramp generator or when attenuator [3] is effective, the ramp time shortens accordingly
The following is valid for type VT-VSPA1-1: The up and down ramp times can be set separately to their minimum value (approx. 30 ms) with the help of the external contacts "ramp up/ down OFF".
The following is valid for type VT-VSPA1K-1: The up and down ramp times can be set collectively to their minimum value (approx. 30 ms) with the help of the external contact "ramp OFF".

Functional description (continued)

Ramp "up/down" OFF

VT-VSPA1-1

Ramp "up" OFF
Ramp "down" OFF

VT-VSPA1K-1

Ramp OFF

The output signal of ramp generator [4] is fed as current command value to the summing amplifier [5]. Here, a command value of 100% corresponds to a voltage of +6 V .

Summing amplifier [5] adds the output signals of the characteristic curve generators [6 or 7] to the command value (can be selected by means of DIL switches ${ }^{2)}$ depending on the valve to be controlled). The current command value can also be filtered through a low-pass filter that can be cut in. Current output stage [9] is controlled via current regulator [8]. In addition, the current regulator modulates the current command value with clock-pulse encoder signal [10] (the frequency can be programmed with the help of DIL switches ${ }^{2}$). The clocked actual current value acts in the solenoid of the valve like a constant current with overlaid dither signal. Type VT-VSPA1-1 is provided with measuring sockets for the internal command value and the actual value.

The following is valid for the command value: +6 V 100%
The following is valid for the actual value: 1 mV 1 mA
The signal "ready for operation" is output and LED "H2" on the front panel (with VSPA1-1) or LED "H2" (with VSPA1K-1) is lit, when:

- The solenoid cables are not short-circuited and the output stage is not overloaded,
- a command value is applied (cable break detection),
- there is no cable break present on the solenoid cable.
${ }^{1)}$ Reference potential for command value 1 is MO (measuring zero).
${ }^{2)}$ For DIL switch settings, see "adjustment elements" on page 8 [] ... Cross-reference to block circuit diagrams on pages 4 and 5

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	+24 VDC + 40 \% -5 \%
Operating range:		
- Upper limit value	$u_{0}(t)_{\text {max }}$	+35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	+22 V
Max. power consumption	$P_{\text {s }}$	50 VA
Max. current consumption	1	1.8 A
Fuse	$I_{\text {s }}$	2.5 A T
Inputs:		
- Command value 1	U_{i}	0 to +9 V (reference potential is M0)
- Command value 2 (differential input)	U_{i}	0 to $+10 \mathrm{~V} ; R_{\mathrm{i}}=100 \Omega \quad 7$ depending on setting
or	$I_{\text {i }}$	$4 \text { to } 20 \mathrm{~mA}\left(\operatorname{load} R_{\mathrm{L}}=100 \Omega\right) \quad \begin{aligned} & \text { depending on setting } \\ & \text { with } \mathrm{S} 11 \text { to } \mathrm{S} 13 \end{aligned}$
or	I_{i}	0 to $20 \mathrm{~mA}\left(\mathrm{load} R_{\mathrm{L}}=100 \Omega\right) \quad$]
Ramp time (adjustment range)	t	30 ms to approx. 1 s or 5 s (depending on setting with S14)
Outputs:		
- Output stage		
- Solenoid current/resistance	$I_{\text {max }}$	$800 \mathrm{~mA}+20 \%, R_{20}=19,5 \Omega \quad$ depending on setting
or	$I_{\text {max }}$	$\left.1600 \mathrm{~mA}+20 \%, R_{20}=5,4 \Omega \quad\right]_{\text {with S }} 17$
- Biasing current at $I_{\max }=800 \mathrm{~mA}$	I_{b}	50 mA or 100 mA depending on setting with
at $I_{\text {max }}=1600 \mathrm{~mA}$	I_{b}	$100 \mathrm{~mA} \quad-\mathrm{S} 17$ and "Zw" (R130)
additionally at $I_{\max }=800 \mathrm{~mA}$	I_{b}	0 to $300 \mathrm{~mA}+20 \%$ Adjustable by means of "Zw"
at $I_{\text {max }}=1600 \mathrm{~mA}$	I_{b}	0 to $600 \mathrm{~mA}+20 \%$ (R130) on the printed-circuit board
- Clock frequency	f	$100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}$ or $370 \mathrm{~Hz} \pm 10 \%$ each (depending on setting with S 25 to S 27)
- Signal "ready for operation" (only with VT-SPA1-1)		
- Component series 10 when ready for operation	U	approx. $U_{\text {O }}$
in the case of a fault	U	$<1 \mathrm{~V}$
- From component series 11 when ready for operation	U	approx. $U_{\mathrm{O}}, 50 \mathrm{~mA}$
in the case of a fault	U	$0 \vee R_{i}=10 \mathrm{k} \Omega \quad$ Load resistance $>10 \mathrm{k} \Omega$
- Regulated voltage	U	$\pm 9 \mathrm{~V} \pm 1 \%, \pm 25 \mathrm{~mA}$ externally laodable
- Measuring sockets		
- Command value "w"	U	0 to $+6 \mathrm{~V}\left(+6 \mathrm{~V} \quad 100 \%\right.$ solenoid current), $R_{\mathrm{i}}=1 \mathrm{k} \Omega$
- Actual current value "/"	\cup	0 to 1600 mV 0 to $1600 \mathrm{~mA} \pm 20 \mathrm{~mA}$
Type of connection:		
- VT-VSPA1-1		32-pin male connector, DIN 41612, form D
- VT-VSPA1K-1		16-pin terminal strip
Card dimensions:		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions		
- Height		$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width soldering side		1 TE (5.08)
- Width component side		3 TE
Permissible operating temperature range	ϑ	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0.1 kg

${ }^{1)}$ The maximum current $I_{\text {max }}$ can be set to the required value by means of command value attenuator potentionmeter "Gw".

Output characteristic curves

Linear output characteristic curve (basic characteristic curve)

11 Adjustment range of biasing current I_{b} by means of potentiometer " Zw " (R130) on the printed-circuit board
12 Adjustment range of maximum command value by means of potentiometer "Gw"
A Characteristic curve with factory setting

Output characteristic curve with firmly set characteristics

(see adjustment instructions on pages 8 and 9)

I_{v} Biasing current curve 2 (qualitative representation)
12 Adjustment range of maximum command value by means of potentiometer "Gw"
1 Characteristic curve 1 (qualitative representation)
2 Characteristic curve 2 (qualitative representation)

Indicator / adjustment elements

VT-VSPA1K-1

Max. command value (attenuator)
Ramp time "up"
Ramp time "down"

Indicator / adjustment elements (continued)
Assignment of DIL switch settings on the card to the valve types (see also label on the printed-circuit board)

Setting for valve types:	$\begin{gathered} \mathrm{S} 15 \text {... S17 } \\ \text { (BR15 ... BR17) } \end{gathered}$	$\begin{gathered} \text { S21 ... S27 } \\ \text { (BR21 ... BR27) } \end{gathered}$	Setting valid for all valve types:	$\begin{gathered} \text { S11 ... S14 } \\ \text { (BR11 ... BR14) } \end{gathered}$
DBE(M)T, DBE(M)30, DRE(M)30, $3 \operatorname{DRE}(\mathrm{M}) 10^{1)}$, 3DRE(M) $16^{11),}$ DBEP6A, DBEP6B, 3DREP6A, 3DREP6B, pumps			Ramp time $\quad \begin{aligned} & 5 \mathrm{~s} \\ & \\ & 1 \mathrm{~s}\end{aligned}$	
DRE(M) 10-5X, DRE(M)20-5X			Command value $2+10 \mathrm{~V}$	
DBE(M) 10-5X, DBE(M) $20-5 \mathrm{X}$, 3DRE(M) 10P-6X, 3DRE(M)16P-6X, ZDRE10, (Z)DBE6			0 ... 20 mA	
DRE6, ZDRE6			$4 \ldots 20 \mathrm{~mA}$	

${ }^{1)}$ Up to component series $5 X$

Meaning of potentiometers "Zw" (R130) and "Gw":

- Adjustment of biasing current by means of potentiometer "Zw" (R130)
- Turning clockwise \rightarrow increase in biasing current
- Turning counter-clockwise \rightarrow reduction of biasing current
- Adjustment of the max. command value by means of potentiometer "Gw"
- Turning clockwise \rightarrow increase in command value
- Turning counter-clockwise \rightarrow reduction of command value

Note (X):
With type VT-VSPA1-1 (component series 10) switch BR22 must be set to "ON" and potentiometer "R130" turned to "lefthand limit stop" before the correct characteristic curve can be set.

With type VT-VSPA1-1 (from component series 11) and type VT-VSPA1K-1, switch S22 is ineffective. Potentiometer "Zw" needs not to be operated.

Meaning of the DIL switches

Note (X):

Before commissioning the amplifiers, make sure that the DIL switches on the printed-circuit board are set according to the relevant application.
Switch positions with reference to the current valve types or previous amplifier cards

Switch	Valve types/amplifier cards			
	DBE(M)T, DBE(M)30 $\operatorname{DRE}(\mathrm{M}) 30, \operatorname{DRE}(\mathrm{M}) 10^{3)}$ DRE(M) $16{ }^{3)}$ DBEP6A, DBEP6B 3DREP6A, 3DREP6B pumps	DRE(M) 10-5X DRE(M) 20-5X	DBE(M) 10-5X DBE(M)20-5X ZDRE10 (Z)DBE6 3DRE(M) 10P-6X 3DRE(M) 16P-6X	DRE, ZDRE6
	VT 2000	VT 2010	VT 2013	VT 2023
	Characteristic curves			
S15 (BR15) S16 (BR16)	Basic characteristic curve OFF OFF	Characteristic curve 1 ON OFF	Characteristic curve 1 ON OFF	Characteristic curve 2 OFF ON
S23 (BR23) S24 (BR24)	Command value filters			
	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{gathered} \mathrm{f}_{-3 \mathrm{~dB}}=4 \mathrm{~Hz} \\ \text { ON } \\ \text { OFF } \end{gathered}$	$\begin{gathered} \mathrm{f}_{-3 \mathrm{~dB}}=4 \mathrm{~Hz} \\ \text { ON } \\ \text { OFF } \end{gathered}$	$\mathrm{f}_{-3 \mathrm{~dB}}=2.5 \mathrm{~Hz}$ OFF ON
	Max. output current ${ }^{1)}$			
S17 (BR17)	$\begin{gathered} I_{\max }=800 \mathrm{~mA} \\ \mathrm{ON} \end{gathered}$	$\begin{gathered} I_{\max }=800 \mathrm{~mA} \\ \mathrm{ON} \end{gathered}$	$I_{\max }=1,6 \mathrm{~A}$ OFF	$I_{\max }=1.6 \mathrm{~A}$ OFF
S25 (BR25) S26 (BR26) S27(BR27)	Clock frequency ${ }^{2)}$			
	$\mathrm{f}=200 \mathrm{~Hz}$ OFF ON ON	$f=200 \mathrm{~Hz}$ OFF ON ON	$\mathrm{f}=300 \mathrm{~Hz}$ OFF OFF ON	$\mathrm{f}=370 \mathrm{~Hz}$ OFF OFF OFF
	Basic biasing current setting			
"Zw" (R130)	100 mA	50 mA	100 mA	100 mA

$\begin{array}{ll}\text { 1) } \begin{array}{l}\text { Doubling of the maximum output current doubles the } \\ \text { adjustment range and the set biasing current. }\end{array} & \begin{array}{l}\text { Adjustment range of biasing current using potentiometer "Zw" } \\ \text { (R130): }\end{array} \\ \text { 2) For } \mathrm{f}=100 \mathrm{~Hz} \text {, DIL switches S25, } \mathrm{S} 26 \text { and } & \begin{array}{l}I_{\max }=800 \mathrm{~mA} \rightarrow I_{\mathrm{b}}=0 \text { to } 300 \mathrm{~mA}\end{array} \\ \text { S27 must be set to the "ON" position. } & I_{\max }=1600 \mathrm{~mA} \rightarrow I_{\mathrm{b}}=0 \text { to } 600 \mathrm{~mA} \\ \text { 3) Up to component series } 5 \mathrm{X} & \text { () valid for VT-VSPA1-1, component series } 10\end{array}$
Adjustment options inedependent of the valve type (command value 2 and ramp time)

S11 (BR11) S12 (BR12) S13 (BR13)	Configuration of differential input			
	Command value 2: +10 V OFF OFF OFF	Command value 2: 0 to 20 mA ON ON OFF	Command value 2: 4 to 20 mA ON ON ON	DRE, ZDRE6
	Max. ramp time			
S14 (BR14)	OFF 1 s		ON 5 s	

Factory setting (corresponds to the configuration of a VT 2000 amplifier)

Unit dimensions (nominal dimensions in mm)

VT-VSPA1-1

Engineering / maintenance notes / supplementary information

- Before commissioning the amplifiers, make sure that the DIL switches on the printed-circuit board are set according to the relevant application.
- The factory setting of the parameters is as follows (for the adjustment of parameters, see pages 8 to 10):
max. ramp time $=5 \mathrm{~s}$, biasing current $=100 \mathrm{~mA}$, max. output current $=800 \mathrm{~mA}$, clock frequency $=200 \mathrm{~Hz}$
- The amplifier card may only be installed when disconnected from the power supply!
- Do not use plugs with free-wheeling diodes or LED lamps for connecting the solenoids!
- Measurements on the card may only be taken with instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- Measuring zero (M0) is raised by +9 V as against 0 V operating voltage and not electrically isolated, i.e. -9 V regulated voltage 0 V operating voltage. For this reason, do not connect measuring zero (MO) to 0 V operating voltage!
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Always shield command value cables; connect the shield to ground on the card side and leave the other end open. Connect the card to ground at terminal 6 or 8 . If no system ground is provided, connect 0 V operating voltage.
Recommendation: Also shield solenoid cables!
For solenoid cables of up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$. For greater lengths, please consult us!
- The distance to aerial lines, radio sources and radar equipment must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Due to the charging current of the smoothing capacitor on the card, fuses must feature slow-blowing characteristics!

Caution! When the differential input is used, both inputs must always be switched on or off simultaneously!
据 Note! Electrical signals (e.g. signal "ready for operation") brought out via control electronics must not be used for switching safety-relevant machine functions!
(See also European standard "Safety requirements for fluid power systems and components - hydraulics", EN 928.)

Troubleshooting

If the amplifier cards are not operable, follow the steps below for troubleshooting:

1. Is the operating voltage applied?

Measurement of contacts 24(ac) against 18 (ac)
2. Fuse on the card defective?
3. Internal $\pm 9 \mathrm{~V}$ operating voltage available on the card?
4. When the internal command value potentiometer is used, is the jumper from $10(\mathrm{ac})$ to $12(\mathrm{ac})$ plugged?
5. Is the external potentiometer properly connected?
6. Is the differential input properly connected?

Check: Reference potential to 30(ac)

$$
0 \text { to }+10 \mathrm{~V} \text { to } 28(\mathrm{ac})
$$

7. Is the solenoid properly connected?

When the card is unplugged, a resistance of approx. 20Ω to 30Ω or 5Ω to 8Ω, depending on the valve, must be measurable between contacts 22ac and 20ac.
The additions to the contact designations are only valid for type VT-VSPA1-1.

Note:

The output stage shuts down in the case of excessive temperatures (e.g. caused by overloading). This fault is signalled by LED "H2" going out!
In the event of a cable break of the " 4 to 20 mA " input, the signal "ready for operation" is reset and LED "H2" also goes out. The following is valid from component series 11 onwards:
In the case of a short-circuit or cable break of the solenoid cable, the output "ready for operation" is switched and LED "H2" flashes at a frequency of 0.5 to 2 Hz as soon as the command value is $>2 \%$ at the same time.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax $\quad+49$ (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

